

Welcome to owmeta’s documentation!

Our main README is available online on Github. 1 This documentation contains
additional materials beyond what is covered there.

	1

	http://github.com/openworm/owmeta

Contents:

	owmeta
	owmeta package

	For Users
	owmeta Data Sources

	Requirements for data storage in OpenWorm

	Adding Data to YOUR OpenWorm Database

	Software Versioning

	Python Release Compatibility

	For Developers
	Testing in owmeta

	Adding documentation

	owmeta coding standards

Issues

Indices and tables

	Index

	Module Index

	Search Page

owmeta

	owmeta package
	owmeta

	Subpackages

	Submodules

owmeta package

owmeta

OpenWorm Unified Data Abstract Layer.

An introduction to owmeta can be found in the README on our
Github page [https://github.com/openworm/owmeta].

Most statements correspond to some action on the database.
Some of these actions may be complex, but intuitively a.B(), the Query form,
will query against the database for the value or values that are related to a through B;
on the other hand, a.B(c), the Update form, will add a statement to the database that a
relates to c through B. For the Update form, a Statement object describing the
relationship stated is returned as a side-effect of the update.

The Update form can also be accessed through the set() method of a Property and the Query form through the get()
method like:

a.B.set(c)

and:

a.B.get()

The get() method also allows for parameterizing the query in ways specific to the Property.

	
class owmeta.Configurable(conf=None, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An object which can accept configuration. A base class intended to be subclassed.

	
get(pname, default=None)

	Gets a config value from this Configurable’s conf

See also

	Configuration.get

	

Subpackages

	owmeta.commands package
	Submodules
	owmeta.commands.biology module

	owmeta.data_trans package
	Submodules
	owmeta.data_trans.bibtex module

	owmeta.data_trans.common_data module

	owmeta.data_trans.connections module

	owmeta.data_trans.context_merge module

	owmeta.data_trans.data_with_evidence_ds module

	owmeta.data_trans.neuron_data module

	owmeta.data_trans.wormatlas module

	owmeta.data_trans.wormbase module

Submodules

	owmeta.bibtex module

	owmeta.bibtex_customizations module

	owmeta.biology module

	owmeta.cell module

	owmeta.cell_common module

	owmeta.channel module

	owmeta.channel_common module

	owmeta.channelworm module

	owmeta.cli_hints module

	owmeta.command module

	owmeta.connection module

	owmeta.document module

	owmeta.documentContext module

	owmeta.evidence module

	owmeta.experiment module

	owmeta.muscle module

	owmeta.my_neuroml module

	owmeta.network module

	owmeta.neuroml module

	owmeta.neuron module

	owmeta.plot module

	owmeta.sources module

	owmeta.translators module

	owmeta.utils module

	owmeta.website module

	owmeta.worm module

	owmeta.worm_common module

owmeta.commands package

Various commands of the same kind as OWM, mostly intended as
sub-commands of OWM.

Submodules

	owmeta.commands.biology module

owmeta.commands.biology module

owmeta.data_trans package

Data translators

Some DataSource and DataTranslator types. Some deal with generic file types (e.g., comma-separated values) while
others are specific to the format of a kind of file housed in owmeta.

Submodules

	owmeta.data_trans.bibtex module

	owmeta.data_trans.common_data module

	owmeta.data_trans.connections module

	owmeta.data_trans.context_merge module

	owmeta.data_trans.data_with_evidence_ds module

	owmeta.data_trans.neuron_data module

	owmeta.data_trans.wormatlas module

	owmeta.data_trans.wormbase module

owmeta.data_trans.bibtex module

	
class owmeta.data_trans.bibtex.BibTexDataSource(bibtex_file_name, **kwargs)

	Bases: owmeta.data_trans.common_data.DSMixin, owmeta_core.data_trans.local_file_ds.LocalFileDataSource

	File nameDatatypeProperty

	Attribute: file_name

	Torrent file nameDatatypeProperty

	Attribute: torrent_file_name

	MD5 hashDatatypeProperty

	Attribute: md5

	SHA-256 hashDatatypeProperty

	Attribute: sha256

	SHA-512 hashDatatypeProperty

	Attribute: sha512

	Input sourceObjectProperty

	Attribute: source

The data source that was translated into this one

	TranslationObjectProperty

	Attribute: translation

Information about the translation process that created this object

	DescriptionDatatypeProperty

	Attribute: description

Free-text describing the data source

	
class owmeta.data_trans.bibtex.BibTexDataTranslator(**kwargs)

	Bases: owmeta.data_trans.common_data.DTMixin, owmeta_core.datasource.DataTranslator

Input type(s): BibTexDataSource

Output type(s): EvidenceDataSource

	
input_type

	alias of BibTexDataSource

	
output_type

	alias of EvidenceDataSource

	
translate()

	Notionally, this method takes a data source, which is translated into
some other data source. There doesn’t necessarily need to be an input
data source.

	
class owmeta.data_trans.bibtex.EvidenceDataSource(*args, **kwargs)

	Bases: owmeta.data_trans.common_data.DSMixin, owmeta_core.datasource.DataSource

	ContextObjectProperty

	Attribute: evidence_context

The context

	Input sourceObjectProperty

	Attribute: source

The data source that was translated into this one

	TranslationObjectProperty

	Attribute: translation

Information about the translation process that created this object

	DescriptionDatatypeProperty

	Attribute: description

Free-text describing the data source

owmeta.data_trans.common_data module

owmeta.data_trans.connections module

owmeta.data_trans.context_merge module

	
class owmeta.data_trans.context_merge.ContextMergeDataTranslator(**kwargs)

	Bases: owmeta.data_trans.common_data.DTMixin, owmeta_core.datasource.DataTranslator

Input type(s): owmeta_core.datasource.OneOrMore (DataWithEvidenceDataSource)

Output type(s): DataWithEvidenceDataSource

	
output_type

	alias of owmeta.data_trans.data_with_evidence_ds.DataWithEvidenceDataSource

	
translate(*sources)

	Notionally, this method takes a data source, which is translated into
some other data source. There doesn’t necessarily need to be an input
data source.

owmeta.data_trans.data_with_evidence_ds module

	
class owmeta.data_trans.data_with_evidence_ds.DataWithEvidenceDataSource(*args, **kwargs)

	Bases: owmeta.data_trans.common_data.DSMixin, owmeta_core.datasource.DataSource

A data source that has an “evidence context” containing statements which support those
in its “data context”. The data source also has a combined context which imports both
the data and evidence contexts.

owmeta.data_trans.neuron_data module

owmeta.data_trans.wormatlas module

owmeta.data_trans.wormbase module

owmeta.bibtex module

	
owmeta.bibtex.bibtex_to_document(bibtex_entry, context=None)

	Takes a single BibTeX entry and translates it into a Document object

owmeta.bibtex_customizations module

	
owmeta.bibtex_customizations.author(record)

	Split author field by ‘and’ into a list of names.

	Parameters

	record (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the record.

	Returns

	dict – the modified record.

	
owmeta.bibtex_customizations.customizations(record)

	Use some functions delivered by the library

	Parameters

	record – a record

	Returns

	– customized record

	
owmeta.bibtex_customizations.doi(record)

	
	Parameters

	record (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the record.

	Returns

	dict – the modified record.

owmeta.biology module

	
class owmeta.biology.BiologyType(**kwargs)

	Bases: owmeta_core.dataobject.DataObject

owmeta.cell module

owmeta.cell_common module

owmeta.channel module

owmeta.channel_common module

	
owmeta.channel_common.CHANNEL_RDF_TYPE = rdflib.term.URIRef('http://schema.openworm.org/2020/07/Channel')

	Shared RDF type for channels

owmeta.channelworm module

owmeta.cli_hints module

owmeta.command module

owmeta.connection module

owmeta.document module

	
exception owmeta.document.PubmedRetrievalException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
exception owmeta.document.WormbaseRetrievalException

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
class owmeta.document.BaseDocument(**kwargs)

	Bases: owmeta_core.dataobject.DataObject

	
class owmeta.document.Document(bibtex=None, doi=None, pubmed=None, wormbase=None, **kwargs)

	Bases: owmeta.document.BaseDocument

A representation of some document.

Possible keys include:

pmid, pubmed: a pubmed id or url (e.g., 24098140)
wbid, wormbase: a wormbase id or url (e.g., WBPaper00044287)
doi: a Digitial Object id or url (e.g., s00454-010-9273-0)
uri: a URI specific to the document, preferably usable for accessing
 the document

	Parameters

	
	bibtexstr [https://docs.python.org/3/library/stdtypes.html#str]

	A string containing a single BibTeX entry. Parsed during initialization, but not saved thereafter. optional

	doistr [https://docs.python.org/3/library/stdtypes.html#str]

	A Digital Object Identifier (DOI). optional

	pubmedstr [https://docs.python.org/3/library/stdtypes.html#str]

	A PubMed ID (PMID) or URL that points to a paper. Ignored if ‘pmid’ is provided. optional

	wormbasestr [https://docs.python.org/3/library/stdtypes.html#str]

	An ID or URL from WormBase that points to a record. Ignored if wbid or wormbaseid are provided. optional

	
defined_augment()

	This fuction must return False if identifier_augment() would
raise an IdentifierMissingException. Override
it when defining a non-standard identifier for subclasses of DataObjects.

	
identifier_augment()

	Override this method to define an identifier in lieu of one explicity set.

One must also override defined_augment() to return True whenever
this method could return a valid identifier.
IdentifierMissingException should be
raised if an identifier cannot be generated by this method.

	Raises

	
	IdentifierMissingException

	

	
update_from_wormbase(replace_existing=False)

	Queries wormbase for additional data to fill in the Document.

If replace_existing is set to True [https://docs.python.org/3/library/constants.html#True], then existing values will be cleared.

	
author

	An author of the document

	
date

	Alias to year

	
doi

	A Digital Object Identifier (DOI), optional

	
pmid

	A PubMed ID (PMID) that points to a paper

	
title

	The title of the document

	
uri

	A non-standard URI for the document

	
wbid

	An ID from WormBase.org that points to a record, optional

	
wormbaseid

	An alias to wbid

	
year

	The year (e.g., publication year) of the document

owmeta.documentContext module

	
class owmeta.documentContext.DocumentContext(document)

	Bases: owmeta_core.context.Context

A Context that corresponds to a document.

	
class owmeta.documentContext.DocumentContextMeta

	Bases: owmeta_core.context.ContextMeta

owmeta.evidence module

	
exception owmeta.evidence.EvidenceError

	Bases: Exception [https://docs.python.org/3/library/exceptions.html#Exception]

	
class owmeta.evidence.Evidence(**kwargs)

	Bases: owmeta_core.dataobject.DataObject

A representation which provides evidence, for a group of statements.

Attaching evidence to an set of statements is done like this:

>>> from owmeta.connection import Connection
>>> from owmeta.evidence import Evidence
>>> from owmeta_core.context import Context

Declare contexts:

>>> ACTX = Context(ident="http://example.org/data/some_statements")
>>> BCTX = Context(ident="http://example.org/data/some_other_statements")
>>> EVCTX = Context(ident="http://example.org/data/some_statements#evidence")

Make statements in ACTX and BCTX contexts:

>>> ACTX(Connection)(pre_cell="VA11", post_cell="VD12", number=3)
>>> BCTX(Connection)(pre_cell="VA11", post_cell="VD12", number=2)

In EVCTX, state that a that a certain document supports the set of
statements in ACTX, but refutes the set of statements in BCTX:

>>> doc = EVCTX(Document)(author='White et al.', date='1986')
>>> EVCTX(Evidence)(reference=doc, supports=ACTX.rdf_object)
>>> EVCTX(Evidence)(reference=doc, refutes=BCTX.rdf_object)

Finally, save the contexts:

>>> ACTX.save_context()
>>> BCTX.save_context()
>>> EVCTX.save_context()

One note about the reference predicate: the reference should, ideally, be
an unambiguous link to a peer-reviewed piece of scientific literature
detailing methods and data analysis that supports the set of statements.
However, in gather data from pre-existing sources, going to that level of
specificity may be difficult due to deficient query capability at the data
source. In such cases, a broader reference, such as a Website with
information which guides readers to a peer-reviewed article supporting the
statement is sufficient.

	
defined_augment()

	This fuction must return False if identifier_augment() would
raise an IdentifierMissingException. Override
it when defining a non-standard identifier for subclasses of DataObjects.

	
identifier_augment()

	Override this method to define an identifier in lieu of one explicity set.

One must also override defined_augment() to return True whenever
this method could return a valid identifier.
IdentifierMissingException should be
raised if an identifier cannot be generated by this method.

	Raises

	
	IdentifierMissingException

	

	
reference

	The resource providing evidence supporting/refuting the attached context

	
refutes

	A context naming a set of statements which are refuted by the attached
reference

	
supports

	A context naming a set of statements which are supported by the attached
reference

	
owmeta.evidence.evidence_for(qctx, ctx, evctx=None)

	Returns an iterable of Evidence

	Parameters

	
	qctxobject [https://docs.python.org/3/library/functions.html#object]

	an object supported by evidence. If the object is a
Context with no identifier, then the query
considers statements ‘staged’ (rather than stored) in the context

	ctxContext

	Context that bounds where we look for statements about qctx. The
contexts for statements found in this context are the actual targets of
Evidence.supports statements.

	evctxContext

	if the Evidence.supports statements should be looked for somewhere other
than ctx, that can be specified in evctx. optional

	
owmeta.evidence.query_context(graph, qctx)

	
	graphrdflib.graph.Graph

	Graph where we can find the contexts for statements in qctx

	qctxowmeta.context.Context

	Container for statements

owmeta.experiment module

	
class owmeta.experiment.Experiment(**kwargs)

	Bases: owmeta_core.dataobject.DataObject

Generic class for storing information about experiments

Should be overridden by specific types of experiments
(example: see PatchClampExperiment in channelworm.py).

Overriding classes should have a list called “conditions” that
contains the names of experimental conditions for that particular
type of experiment.
Each of the items in “conditions” should also be either a
DatatypeProperty or ObjectProperty for the experiment as well.

	
get_conditions()

	Return conditions and their associated values in a dict.

	
reference

	Supporting article for this experiment.

owmeta.muscle module

owmeta.my_neuroml module

owmeta.network module

owmeta.neuroml module

	
class owmeta.neuroml.NeuroMLDocument(**kwargs)

	Bases: owmeta_core.dataobject.DataObject

Represents a NeuroML document

The document may be represented literally in the RDF graph using xml_content or
stored elsewhere and included by reference with document_url.

Example:

>>> embedded_nml = NeuroMLDocument(key='embedded_ex', content="""\
... <?xml version="1.0" encoding="UTF-8"?>
... <neuroml xmlns="http://www.neuroml.org/schema/neuroml2"
... xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
... xsi:schemaLocation="http://www.neuroml.org/schema/neuroml2
... https://raw.github.com/NeuroML/NeuroML2/master/Schemas/NeuroML2/NeuroML_v2beta.xsd"
... id="k_slow">
... <ionChannel id="k_slow" conductance="10pS" type="ionChannelHH" species="k">
... <notes>K slow channel from Boyle and Cohen 2008</notes>
... <gateHHtauInf id="n" instances="1">
... <timeCourse type="fixedTimeCourse" tau="25.0007 ms"/>
... <steadyState type="HHSigmoidVariable" rate="1" scale="15.8512 mV" midpoint="19.8741 mV"/>
... </gateHHtauInf>
... </ionChannel>
... </neuroml>""")

>>> external_nml = NeuroMLDocument(ident='external_ex',
... document_url='')

	
content

	XML content for the document. Should be a complete NeuroML document rather than a
fragment.

	
document_url

	URL where the XML content of the document can be retrieved

	
class owmeta.neuroml.NeuroMLProperty(resolver, *args, **kwargs)

	Bases: owmeta_core.dataobject_property.ObjectProperty

Property for attaching NeuroML documents to resources

	
value_type

	alias of NeuroMLDocument

owmeta.neuron module

owmeta.plot module

	
class owmeta.plot.Plot(data=None, *args, **kwargs)

	Bases: owmeta_core.dataobject.DataObject

Object for storing plot data in owmeta.

	Parameters

	
	data2D list [https://docs.python.org/3/library/stdtypes.html#list] (list [https://docs.python.org/3/library/stdtypes.html#list] of lists)

	List of XY coordinates for this Plot.

	Example usage ::

	>>> pl = Plot([[1, 2], [3, 4]])
>>> pl.get_data()
[[1, 2], [3, 4]]

	
get_data()

	Get the data stored for this plot.

	
set_data(data)

	Set the data attribute, which is user-facing,
as well as the serialized _data_string
attribute, which is used for db storage.

owmeta.sources module

owmeta.translators module

owmeta.utils module

Common utilities for translation, massaging data, etc., that don’t fit
elsewhere in owmeta

owmeta.website module

	
class owmeta.website.Website(title=None, **kwargs)

	Bases: owmeta.document.BaseDocument

A representation of a website

	
defined_augment()

	This fuction must return False if identifier_augment() would
raise an IdentifierMissingException. Override
it when defining a non-standard identifier for subclasses of DataObjects.

	
identifier_augment()

	Override this method to define an identifier in lieu of one explicity set.

One must also override defined_augment() to return True whenever
this method could return a valid identifier.
IdentifierMissingException should be
raised if an identifier cannot be generated by this method.

	Raises

	
	IdentifierMissingException

	

	
title

	The official name for the website

	
url

	A URL for the website

owmeta.worm module

owmeta.worm_common module

For Users

	owmeta Data Sources
	A Note on owmeta Data

	Neurons

	Muscle cells

	Connectome

	Data Source References

	Requirements for data storage in OpenWorm
	Interface

	Data modeling

	Information assurance

	Miscellaneous

	Why RDF?

	Adding Data to YOUR OpenWorm Database
	Contexts

	Software Versioning
	Documentation versioning

	Python Release Compatibility

owmeta Data Sources

The sources of data for owmeta are stored in the OpenWormData
repository [https://github.com/openworm/OpenWormData]. A few
DataTranslators translate
these data into common owmeta data sources. You can list these by running:

owm source list

and you can show some of the properties of a data source by running:

owm source show $SOURCE_IDENTIFIER

For instance, you can run the following to see the top-level data source, try:

owm source show http://openworm.org/data

This will print out summary descriptions of the sources that contribute to the
main data source.

A Note on owmeta Data

Below, each major element of the worm’s anatomy that owmeta stores data
on is considered individually. The data being used is tagged by source
in a superscript, and the decisions made during the curation process
(if any) are described.

Neurons

	Neuron names 2: Extracted from WormBase. Dynamic version on this google spreadsheet [https://docs.google.com/spreadsheets/d/1NDx9LRF_B2phR5w4HlEtxJzxx1ZIPT2gA0ZmNmozjos/edit#gid=1]. Staged in this csv file [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/aux_data/C.%20elegans%20Cell%20List%20-%20WormBase.csv]. Parsed by this method [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/scripts/insert_worm.py#L145].

	Neuron types 1: Extracted from WormAtlas.org. Staged in this csv file [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/aux_data/Modified%20celegans%20db%20dump.csv]. Parsed by this method [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/scripts/insert_worm.py#L287].

	Cell descriptions 1: Extracted from WormAtlas.org. Staged in this tsv file [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/aux_data/C.%20elegans%20Cell%20List%20-%20WormAtlas.tsv]. Parsed by this method [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/scripts/insert_worm.py#L68].

	Lineage names 1: Extracted from WormAtlas.org. Dynamic version on this google spreadsheet [https://docs.google.com/spreadsheets/d/1Jc9pOJAce8DdcgkTgkUXafhsBQdrer2Y47zrHsxlqWg/edit]. Staged in this tsv file [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/aux_data/C.%20elegans%20Cell%20List%20-%20WormAtlas.tsv]. Parsed by this method [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/scripts/insert_worm.py#L68].

	Neurotransmitters 1: Extracted from WormAtlas.org. Dynamic version on this google spreadsheet [https://docs.google.com/spreadsheets/d/1Jc9pOJAce8DdcgkTgkUXafhsBQdrer2Y47zrHsxlqWg/edit]. Staged in this csv file [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/aux_data/Modified%20celegans%20db%20dump.csv]. Parsed by this method [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/scripts/insert_worm.py#L262].

	Neuropeptides 1: Extracted from WormAtlas.org. Dynamic version on this google spreadsheet [https://docs.google.com/spreadsheets/d/1Jc9pOJAce8DdcgkTgkUXafhsBQdrer2Y47zrHsxlqWg/edit]. Staged in this csv file [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/aux_data/Modified%20celegans%20db%20dump.csv]. Parsed by this method [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/scripts/insert_worm.py#L274].

	Receptors 1: Extracted from WormAtlas.org. Dynamic version on this google spreadsheet [https://docs.google.com/spreadsheets/d/1Jc9pOJAce8DdcgkTgkUXafhsBQdrer2Y47zrHsxlqWg/edit]. Staged in this csv file [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/aux_data/Modified%20celegans%20db%20dump.csv]. Parsed by this method [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/scripts/insert_worm.py#L280].

	Innexins 1: Extracted from WormAtlas.org. Dynamic version on this google spreadsheet [https://docs.google.com/spreadsheets/d/1Jc9pOJAce8DdcgkTgkUXafhsBQdrer2Y47zrHsxlqWg/edit]. Staged in this csv file [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/aux_data/Modified%20celegans%20db%20dump.csv]. Parsed by this method [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/scripts/insert_worm.py#L268].

Gene expression data below, additional to that extracted from WormAtlas
concerning receptors, neuropeptides, neurotransmitters and innexins are parsed
by this method [https://github.com/openworm/owmeta/blob/4eb25df267ce385053f746ceb66e74d9c616403f/OpenWormData/scripts/insert_worm.py#L217]:

	Monoamine secretors and receptors, neuropeptide secretors and receptors 4:
Dynamic version on this google spreadsheet [https://docs.google.com/spreadsheets/d/1kCxOOKu1wAREa9VbBiWVVHh-GEC3kJk0A3YVEipPKcc/edit#gid=0].
Staged in this csv file [https://github.com/openworm/owmeta/blob/27647748981fe0fe135b8aa39191c0e32579c923/OpenWormData/aux_data/expression_data/Bentley_et_al_2016_expression.csv].

Muscle cells

	Muscle names 2: Extracted from WormBase. Dynamic version on this google
spreadsheet [https://docs.google.com/spreadsheets/d/1NDx9LRF_B2phR5w4HlEtxJzxx1ZIPT2gA0ZmNmozjos/edit#gid=1]. Staged in this csv file [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/aux_data/C.%20elegans%20Cell%20List%20-%20WormBase.csv]. Parsed by this
method [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/scripts/insert_worm.py#L44].

	Cell descriptions 1: Extracted from WormAtlas.org. Dynamic version on
this google spreadsheet [https://docs.google.com/spreadsheets/d/1Jc9pOJAce8DdcgkTgkUXafhsBQdrer2Y47zrHsxlqWg/edit]. Staged in this tsv file [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/aux_data/C.%20elegans%20Cell%20List%20-%20WormAtlas.tsv].
Parsed by this method [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/scripts/insert_worm.py#L68].

	Lineage names 1: Extracted from WormAtlas.org. Dynamic version on this
google spreadsheet [https://docs.google.com/spreadsheets/d/1Jc9pOJAce8DdcgkTgkUXafhsBQdrer2Y47zrHsxlqWg/edit]. Staged in this tsv file [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/aux_data/C.%20elegans%20Cell%20List%20-%20WormAtlas.tsv]. Parsed by
this method [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/scripts/insert_worm.py#L68].

	Neurons that innervate each muscle 3: Extracted from data personally
communicated by S. Cook. Staged in this csv file [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/aux_data/herm_full_edgelist.csv]. Parsed by
this method [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/scripts/insert_worm.py#L432].

Connectome

	Gap junctions between neurons 3: Extracted from data personally
communicated by S. Cook. Staged in this csv file [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/aux_data/herm_full_edgelist.csv]. Parsed by
this method [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/scripts/insert_worm.py#L423].

	Synapses between neurons 3: Extracted from data personally communicated by
S. Cook. Staged in this csv file [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/aux_data/herm_full_edgelist.csv]. Parsed by this method [https://github.com/openworm/owmeta/blob/945f7172f0dff1d022ce0574f3c630ee53297386/OpenWormData/scripts/insert_worm.py#L423].

Curation note

There was another source of C. elegans connectome data that was created by
members of the OpenWorm project that has since been retired. The history of
this spreadsheet is mostly contained in this forum post [https://groups.google.com/forum/#!topic/openworm-discuss/G9wKoR8N-l0/discussion]
We decided to use the Emmons data set 3 as the authoritative source for
connectome data, as it is the very latest version and updated version of the
C. elegans connectome that we are familiar with.

Data Source References

	1(1,2,3,4,5,6,7,8,9)

	Altun, Z.F., Herndon, L.A., Wolkow, C.A., Crocker, C., Lints, R. and Hall, D. H. (2015). WormAtlas. Retrieved from http://www.wormatlas.org
- WormAtlas Complete Cell List [http://www.wormatlas.org/celllist.htm]

	2(1,2)

	
	Harris, T. W., Antoshechkin, I., Bieri, T., Blasiar, D., Chan, J., Chen, W. J., … Sternberg, P. W. (2010). WormBase: a comprehensive resource for nematode research. Nucleic Acids Research, 38(Database issue), D463–7. http://doi.org/10.1093/nar/gkp952

	Lee, R. Y. N., & Sternberg, P. W. (2003). Building a cell and anatomy ontology of Caenorhabditis elegans. Comparative and Functional Genomics, 4(1), 121–6. http://doi.org/10.1002/cfg.248

	3(1,2,3,4)

	Emmons, S., Cook, S., Jarrell, T., Wang, Y., Yakolev, M., Nguyen, K., Hall, D. Whole-animal C. elegans connectomes. C. Elegans Meeting 2015 http://abstracts.genetics-gsa.org/cgi-bin/celegans15s/wsrch15.pl?author=emmons&sort=ptimes&sbutton=Detail&absno=155110844&sid=668862

	4

	Bentley B., Branicky R., Barnes C. L., Chew Y. L., Yemini E., Bullmore E. T., Vertes P. E., Schafer W. R. (2016) The Multilayer Connectome of Caenorhabditis elegans. PLoS Comput Biol 12(12): e1005283. http://doi.org/10.1371/journal.pcbi.1005283

Requirements for data storage in OpenWorm

Our OpenWorm database captures facts about C. elegans. The database stores
data for generating model files and together with annotations describing the
origins of the data. Below are a set of recommendations for implementation of
the database organized around an RDF model.

Interface

Access is through a Python library which communicates with the database. This
library serves the function of providing an object oriented view on the database
that can be accessed through the Python scripts commonly used in the project.
The api is described separately.

Data modeling

Biophysical and anatomical data are included in the database. A sketch of some
features of the data model is below. Also included in our model are the
relationships between these types. Given our choice of data types, we do not
model the individual interactions between cells as entities in the database.
Rather these are described by generic predicates in an RDF triple [http://stackoverflow.com/a/1122451].
For instance, neuron A synapsing with muscle cell B would give a statement
(A, synapsesWith, B), but A synapsing with neuron C would also have
(A, synapsesWith, C).

Nervous system

For the worm’s nervous system, we capture a few important data types (listed
below). These correspond primarily to the anatomical structures
and chemicals which are necessary for the worm to record external and internal
stimuli and activate its body in response to those stimuli.

Data types

A non-exhaustive list of neurological data types in our C. elegans database:

	receptor types identified in the nerve cell

	neurons

	ion channels

	neurotransmitters

	muscle receptors

Development

C. elegans has very stable cell division patterns in the absence of
mutations. This means that we can capture divisions in our database as static
‘daughterOf’ relationships. The theory of differentiation codes additionally
gives an algorithmic description to the growth patterns of the worm which
describes signals transmitted between developing cells. In order to test this
theory we would like to leverage existing photographic data indicating the
volume of cells at the time of their division as this relates to the
differentiation code stored by the cell. Progress on this issue is documented
on GitHub [https://github.com/openworm/owmeta/issues/7#issuecomment-45401916]

Aging

Concurrently with development, we would like to begin modeling the effects of aging on the
worm. Aging typically manifests in physiological changes due to transcription errors or
cell death. These physiological changes can be represented abstractly as parameters to the
function of biological entities. See GitHub [https://github.com/openworm/owmeta/issues/6] for further discussion.

Information assurance

Provenance

Tracking the origins of facts stated in the database demands a method of annotating
statements in our database. Providing citations for facts must be as simple as providing a
global identifier (e.g., URI, DOI) or a local identifier (e.g., Bibtex identifier, Pubmed
ID). With owmeta, supporting information can be attached to named graphs [https://en.wikipedia.org/wiki/Named_graph], which are
groupings of statements with a URI attached to them. A named graph can have as many or as
few statements as desired. Furthermore, a given triple can occur in multiple named graphs.
Further details for the attachment of evidence using this technique are given in the
api.

In line with current practices for communication through the source code management
platform, GitHub, we track responsibility for new uploads to the database through the
OpenWormData [https://github.com/openworm/OpenWormData] Git repository. Each named graph is canonicalized – essentially, triples
are sorted and written to a text file – and committed to a Git repository which gives us,
at least, an email address and a timestamp for all modifications.

Access control

Data in owmeta are distributed as a bundle, a packaging structure which contains a set of
canonicalized named graphs and, optionally, some files. Responsibility for restricting
who can modify a bundle is, in the first instance, up to the bundle creator. When the
bundle is actually distributed, the responsibility then falls on the distributor to ensure
authentication of the bundle’s provider and integrity of the bundle.

In OpenWorm, we create bundles from the OpenWormData GitHub repository. Access to the
repository is managed by senior OpenWorm contributors. Bundles are deployed to Google
Drive with write access controlled by Mark Watts. You can fetch OpenWorm bundles by adding
a remote like this:

owm bundle remote add google-drive 'https://drive.google.com/uc?id=1NYAcKdcvoFu5c7Nz3l4hK5UacG_eD56V&authuser=0&export=download'

google-drive can be substituted with any string.

Miscellaneous

Versioning

Experimental methods are constantly improving in biological research. These improvements
may require updating the data we reference or store internally. However, in making updates
we must not immediately expunge older content, breaking links created by internal and
external agents. Instead, we utilize bundle versioning to track revisions to the data.
Each successive release of the bundle increments the bundle version number.

Why RDF?

RDF offers advantages in resilience to schema additions and increased
flexibility in integrating data from disparate sources. 1 These qualities can
be valued by comparison to relational database systems. Typically, schema
changes in a relational database require extensive work for applications using
it. 2 In the author’s experience, RDF databases offer more freedom in
restructuring. Also, for data integration, SPARQL, the standard language for
querying over RDF has
Federated queries [http://www.w3.org/TR/sparql11-federated-query/] which
allow for nearly painless integration of external SPARQL endpoints with
existing queries.

	1

	http://answers.semanticweb.com/questions/19183/advantages-of-rdf-over-relational-databases

	2

	http://research.microsoft.com/pubs/118211/andy%20maule%20-%20thesis.pdf

The advantage of local storage of the database that goes along with each copy
of the library is that the data will have the version number of the library.
This means that data can be ‘deprecated’ along with a deprecated version of the
library. This also will prevent changes made to a volatile database that
break downstream code that uses the library.

Adding Data to YOUR OpenWorm Database

So, you’ve got some biological data about the worm and you’d like to save it in
owmeta, but you don’t know how it’s done?

You’ve come to the right place!

A few biological entities (e.g., Cell, Neuron, Muscle, Worm) are pre-coded into
owmeta. The full list is available in the API.
If these entities already cover your use-case, then all you need to do is add
values for the appropriate fields and save them. If you have data already loaded
into your database, then you can load objects from it:

>>> from owmeta.neuron import Neuron
>>> n = Neuron.query()
>>> n.receptor('UNC-13')
owmeta_core.statement.Statement(...obj=owmeta_core.dataobject_property.ContextualizedPropertyValue(rdflib.term.Literal(u'UNC-13')), context=None)
>>> for x in n.load():
... do_something_with_unc13_neuron(n) # doctest.SKIP

If you need additional entities it’s easy to create them. Documentation for this
is provided here.

Typically, you’ll want to attach the data that you insert to entities already
in the database. This allows you to recover objects in a hierarchical fashion
from the database later. Worm, for instance, has a
property, neuron_network, which points to the
Network which should contain all neural cells and
synaptic connections. To initialize the hierarchy you would do something like:

>>> from owmeta_core.context import Context
>>> from owmeta.worm import Worm
>>> from owmeta.network import Network
>>> ctx = Context('http://example.org/c-briggsae')
>>> w = ctx(Worm)('C. briggsae') # The name is optional and currently defaults to 'C. elegans'
>>> nn = ctx(Network)() # make a neuron network
>>> w.neuron_network(nn) # attach to the worm the neuron network
owmeta_core.statement.Statement(...)
>>> n = ctx(Neuron)('NeuronX') # make a neuron
>>> n.receptor('UNC-13') # state that the neuron has a UNC-13 type receptor
owmeta_core.statement.Statement(...)
>>> nn.neuron(n) # attach to the neuron network
owmeta_core.statement.Statement(...)
>>> ctx.save() # save all of the data attached to the worm

It is possible to create objects without attaching them to anything and they
can still be referenced by calling load on an instance of the object’s class as
in n.load() above. This also points out another fact: you don’t have to set
up the hierarchy for each insert in order for the objects to be linked to
existing entities. If you have previously set up connections to an entity
(e.g., Worm('C. briggsae')), assuming you only have one such entity, you
can refer to things attached to it without respecifying the hierarchy for each
script. The database packaged with owmeta should have only one Worm and one
Network.

Remember that once you’ve made all of the statements, you must save the context
in which the statements are made.

Future capabilities:

	Adding propositional logic to support making statements about all entities
matching some conditions without needing to load() and save() them
from the database.

	Statements like:

ctx = Context('http://example.org/c-briggsae')
w = ctx.stored(Worm)()
w.neuron_network.neuron.receptor('UNC-13')
l = list(w.load()) # Get a list of worms with neurons expressing 'UNC-13'

currently, to do the equivalent, you must work backwards, finding all neurons
with UNC-13 receptors, then getting all networks with those neurons, then
getting all worms with those networks:

worms = set()
n = ctx.stored(Neuron)()
n.receptor('UNC-13')
for ns in n.load():
 nn = ctx.stored(Network)()
 nn.neuron(ns)
 for z in nn.load():
 w = ctx.stored(Worm)()
 w.neuron_network(z)
 worms.add(w)
l = list(worms)

It’s not difficult logic, but it’s 8 extra lines of code for a, conceptually,
very simple query.

	Also, queries like:

l = list(ctx.stored(Worm)('C. briggsae').neuron_network.neuron.receptor()) # get a list
#of all receptors expressed in neurons of C. briggsae

Again, not difficult to write out, but in this case it actually gives a much
longer query time because additional values are queried in a load() call
that are never returned.

We’d also like operators for composing many such strings so:

ctx.stored(Worm)('C. briggsae').neuron_network.neuron.get('receptor', 'innexin') # list
#of (receptor, innexin) values for each neuron

would be possible with one query and thus not requiring parsing and iterating
over neurons twice–it’s all done in a single, simple query.

Contexts

Above, we used contexts without explaining them. In natural languages, our
statements are made in a context that influences how they should be
interpreted. In owmeta, that kind of context-sensitivity is modeled by using
owmeta.context.Context objects. To see what this looks like, let’s
start with an example.

Basics

I have data about widgets from BigDataWarehouse (BDW) that I want to translate
into RDF using owmeta, but I don’t want put them with my other widget data since
BDW data may conflict with mine. Also, if get more BDW data, I want to be able
to relate these data to that. A good way to keep data which are made at
distinct times or which come from different, possibly conflicting, sources is
using contexts. The code below shows how to do that:

>>> from rdflib import ConjunctiveGraph
>>> from owmeta_core.context import Context
>>> # from mymod import Widget # my own OWM widget model
>>> # from bdw import Load # BigDataWarehouse API

>>> # Create a Context with an identifier appropriate to this BDW data import
>>> ctx = Context('http://example.org/data/imports/BDW_Widgets_2017-2018')
>>> ctx.mapper.process_class(Widget)

>>> # Create a context manager using the default behavior of reading the
>>> # dictionary of current local variables
>>> with ctx(W=Widget) as c:
... for record in Load(data_set='Widgets2017-2018'):
... # declares Widgets in this context
... c.W(part_number=record.pnum,
... fullness=record.flns,
... hardiness=record.hrds)
Widget(ident=rdflib.term.URIRef(...))

>>> # Create an RDFLib graph as the target for the data
>>> g = ConjunctiveGraph()

>>> # Save the data
>>> ctx.save(g)

>>> # Serialize the data in the nquads format so we can see that all of our
>>> # statements are in the proper context
>>> print(g.serialize(format='nquads').decode('UTF-8'))
<http://example.org/BDW/entities/Widget#12> <http...> <http://example.org/data/imports/BDW_Widgets_2017-2018> .
<http://example.org/BDW/entities/Widget#12> <...

If you’ve worked with lots of data before, this kind of pattern should be
familiar. You can see how, with later imports, you would follow the naming
scheme to create new contexts (e.g.,
http://example.org/data/imports/BDW_Widgets_2018-2019). These additional
contexts could then have separate metadata attached to them or they could be
compared:

>>> len(list(ctx(Widget)().load()))
1
>>> len(list(ctx18(Widget)().load())) # 2018-2019 context
3

Context Metadata

Contexts, because they have identifiers just like any other objects, so we can
make statements about them as well. An essential statement is imports: Contexts
import other contexts, which means, if you follow owmeta semantics, that
when you query objects from the importing context, that the imported contexts
will also be available to query.

Software Versioning

The owmeta library follows the semanitc versioning scheme [https://semver.org]. For the sake of versioning, the software interface
consists of:

	Extensions to the owm command line defined

	All “public” definitions (i.e., those whose names do not begin with ‘_’) in
the owmeta package, sub-packages, and sub-modules

	The format of RDF data generated by subclasses of
owmeta_core.dataobject.DataObject and defined in the owmeta package,
sub-packages, and sub-modules

	The API documentation for the owmeta package, sub-packages, and
sub-modules

In addition, any changes to the packages released on PyPI mandates at least a
patch version increment.

For Git, our software version control system, software releases will be
represented as tags in the form v$semantic_version with all components of
the semantic version represented.

Documentation versioning

The documentation will have a distinct version number from the software. The
version numbers for the documentation must change at least as often as the
software versioning since the relationship of the documentation to the software
necessarily changes. However, changes _only_ to the non-API documentation will
not be a cause for a change to any of the components of the software version
number. For documentation releases which coincide with software releases, the
documentation version number will simply be the software version number. Any
subsequent change to documentation between software releases will compel an
increase in the documentation version number by one. The documentation version
number for such documentation releases will be represented as
${software_version}+docs${documentation_increment}.

Python Release Compatibility

All Python releases will be supported until they reach their official
end-of-life, typically reported as “Release Schedule” PEPs (search “release
schedule” on the PEP index [https://www.python.org/dev/peps/#id7])
Thereafter, any regressions due to dependencies of owmeta dropping support for
an EOL Python version, or due to a change in owmeta making use of a feature in a
still-supported Python release will only be fixed for the sake of OpenWorm
projects when requested by an issue on our tracker [https://github.com/openworm/owmeta/issues] or for other projects when a
compelling case can be made.

This policy is intended to provide support to most well-maintained projects
which depend on owmeta while not overburdening developers.

For Developers

	Testing in owmeta
	Preparing for tests

	Running tests

	Writing tests

	Adding documentation
	API Documentation

	Substitutions

	Conventions

	owmeta coding standards

Testing in owmeta

Preparing for tests

Within the owmeta project directory, owmeta can be installed for development and testing like this:

pip install --editable .

The project database should be populated like:

owm clone https://github.com/openworm/OpenWormData.git

Running tests

Tests should be run via setup.py like:

python setup.py test

you can pass options to pytest like so:

python setup.py test --addopts '-k DataIntegrityTest'

Writing tests

Tests are written using Python’s unittest. In general, a collection of
closely related tests should be in one file. For selecting different classes of
tests, tests can also be tagged using pytest marks like:

@pytest.mark.tag
class TestClass(unittest.TestCase):
 ...

Currently, marks are used to distinguish between unit-level tests and others
which have the inttest mark. All marks are listed in pytest.ini under
‘markers’.

Adding documentation

Documentation for owmeta is housed in two locations:

	In the top-level project directory as INSTALL.md and README.md.

	As a Sphinx [http://sphinx-doc.org/] project under the docs directory

By way of example, to add a page about useful facts concerning C. elegans to
the documentation, include an entry in the list under toctree in
docs/index.rst like:

worm-facts

and create the file worm-facts.rst under the docs directory and
add a line:

.. _worm-facts:

to the top of your file, remembering to leave an empty line before adding all
of your wonderful worm facts.

You can get a preview of what your documentation will look like when it is
published by running sphinx-build on the docs directory:

sphinx-build -w sphinx-errors docs build_destination

The docs will be compiled to html which you can view by pointing your web
browser at build_destination/index.html. If you want to view the
documentation locally with the ReadTheDocs theme [https://github.com/snide/sphinx_rtd_theme] you’ll need to
download and install it.

API Documentation

API documentation is generated by the Sphinx autodoc [http://sphinx-doc.org/ext/autodoc.html] extension. The
format should be easy to pick up on, but a reference is available here [https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt]. Just add a docstring to your function/class/method and add an
automodule line to owmeta/__init__.py and your class should
appear among the other documented classes.

Substitutions

Project-wide substitutions can be (conservatively!) added to allow for easily
changing a value over all of the documentation. Currently defined substitutions
can be found in conf.py in the rst_epilog setting. More about
substitutions [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#substitution-definitions]

Conventions

If you’d like to add a convention, list it here and start using it. It can be
reviewed as part of a pull request.

	Narrative text should be wrapped at 80 characters.

	Long links should be extracted from narrative text. Use your judgement on
what ‘long’ is, but if it causes the line width to stray beyond 80
characters that’s a good indication.

owmeta coding standards

Pull requests are required to follow the PEP-8 Guidelines for contributions of
Python code to owmeta, with some exceptions noted below. Compliance can be
checked with the pep8 tool and these command line arguments:

--max-line-length=120 --ignore=E261,E266,E265,E402,E121,E123,E126,E226,E24,E704,E128

Refer to the pep8 documentation [http://pep8.readthedocs.io/en/release-1.7.x/intro.html#error-codes]
for the meanings of these error codes.

Lines of code should only be wrapped before 120 chars for readability. Comments
and string literals, including docstrings, can be wrapped to a shorter length.

Some violations can be corrected with autopep8.

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 owmeta	

 	
 	
 owmeta.bibtex	

 	
 	
 owmeta.bibtex_customizations	

 	
 	
 owmeta.biology	

 	
 	
 owmeta.cell_common	

 	
 	
 owmeta.channel_common	

 	
 	
 owmeta.cli_hints	

 	
 	
 owmeta.commands	

 	
 	
 owmeta.data_trans	

 	
 	
 owmeta.data_trans.bibtex	

 	
 	
 owmeta.data_trans.common_data	

 	
 	
 owmeta.data_trans.context_merge	

 	
 	
 owmeta.data_trans.data_with_evidence_ds	

 	
 	
 owmeta.document	

 	
 	
 owmeta.documentContext	

 	
 	
 owmeta.evidence	

 	
 	
 owmeta.experiment	

 	
 	
 owmeta.neuroml	

 	
 	
 owmeta.plot	

 	
 	
 owmeta.utils	

 	
 	
 owmeta.website	

 	
 	
 owmeta.worm_common	

Index

 A
 | B
 | C
 | D
 | E
 | G
 | I
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | Y

A

 	
 	author (owmeta.document.Document attribute)

 	
 	author() (in module owmeta.bibtex_customizations)

B

 	
 	BaseDocument (class in owmeta.document)

 	bibtex_to_document() (in module owmeta.bibtex)

 	
 	BibTexDataSource (class in owmeta.data_trans.bibtex)

 	BibTexDataTranslator (class in owmeta.data_trans.bibtex)

 	BiologyType (class in owmeta.biology)

C

 	
 	CHANNEL_RDF_TYPE (in module owmeta.channel_common)

 	Configurable (class in owmeta)

 	
 	content (owmeta.neuroml.NeuroMLDocument attribute)

 	ContextMergeDataTranslator (class in owmeta.data_trans.context_merge)

 	customizations() (in module owmeta.bibtex_customizations)

D

 	
 	DataWithEvidenceDataSource (class in owmeta.data_trans.data_with_evidence_ds)

 	date (owmeta.document.Document attribute)

 	defined_augment() (owmeta.document.Document method)

 	(owmeta.evidence.Evidence method)

 	(owmeta.website.Website method)

 	
 	Document (class in owmeta.document)

 	document_url (owmeta.neuroml.NeuroMLDocument attribute)

 	DocumentContext (class in owmeta.documentContext)

 	DocumentContextMeta (class in owmeta.documentContext)

 	doi (owmeta.document.Document attribute)

 	doi() (in module owmeta.bibtex_customizations)

E

 	
 	Evidence (class in owmeta.evidence)

 	evidence_for() (in module owmeta.evidence)

 	
 	EvidenceDataSource (class in owmeta.data_trans.bibtex)

 	EvidenceError

 	Experiment (class in owmeta.experiment)

G

 	
 	get() (owmeta.Configurable method)

 	
 	get_conditions() (owmeta.experiment.Experiment method)

 	get_data() (owmeta.plot.Plot method)

I

 	
 	identifier_augment() (owmeta.document.Document method)

 	(owmeta.evidence.Evidence method)

 	(owmeta.website.Website method)

 	
 	input_type (owmeta.data_trans.bibtex.BibTexDataTranslator attribute)

N

 	
 	NeuroMLDocument (class in owmeta.neuroml)

 	
 	NeuroMLProperty (class in owmeta.neuroml)

O

 	
 	output_type (owmeta.data_trans.bibtex.BibTexDataTranslator attribute)

 	(owmeta.data_trans.context_merge.ContextMergeDataTranslator attribute)

 	owmeta (module)

 	owmeta.bibtex (module)

 	owmeta.bibtex_customizations (module)

 	owmeta.biology (module)

 	owmeta.cell_common (module)

 	owmeta.channel_common (module)

 	owmeta.cli_hints (module)

 	owmeta.commands (module)

 	owmeta.data_trans (module)

 	owmeta.data_trans.bibtex (module)

 	
 	owmeta.data_trans.common_data (module)

 	owmeta.data_trans.context_merge (module)

 	owmeta.data_trans.data_with_evidence_ds (module)

 	owmeta.document (module)

 	owmeta.documentContext (module)

 	owmeta.evidence (module)

 	owmeta.experiment (module)

 	owmeta.neuroml (module)

 	owmeta.plot (module)

 	owmeta.utils (module)

 	owmeta.website (module)

 	owmeta.worm_common (module)

P

 	
 	Plot (class in owmeta.plot)

 	
 	pmid (owmeta.document.Document attribute)

 	PubmedRetrievalException

Q

 	
 	query_context() (in module owmeta.evidence)

R

 	
 	reference (owmeta.evidence.Evidence attribute)

 	(owmeta.experiment.Experiment attribute)

 	
 	refutes (owmeta.evidence.Evidence attribute)

S

 	
 	set_data() (owmeta.plot.Plot method)

 	
 	supports (owmeta.evidence.Evidence attribute)

T

 	
 	title (owmeta.document.Document attribute)

 	(owmeta.website.Website attribute)

 	
 	translate() (owmeta.data_trans.bibtex.BibTexDataTranslator method)

 	(owmeta.data_trans.context_merge.ContextMergeDataTranslator method)

U

 	
 	update_from_wormbase() (owmeta.document.Document method)

 	
 	uri (owmeta.document.Document attribute)

 	url (owmeta.website.Website attribute)

V

 	
 	value_type (owmeta.neuroml.NeuroMLProperty attribute)

W

 	
 	wbid (owmeta.document.Document attribute)

 	Website (class in owmeta.website)

 	
 	wormbaseid (owmeta.document.Document attribute)

 	WormbaseRetrievalException

Y

 	
 	year (owmeta.document.Document attribute)

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to owmeta’s documentation!

 		
 owmeta

 		
 owmeta package

 		
 owmeta

 		
 Subpackages

 		
 Submodules

 		
 For Users

 		
 owmeta Data Sources

 		
 A Note on owmeta Data

 		
 Neurons

 		
 Muscle cells

 		
 Connectome

 		
 Data Source References

 		
 Requirements for data storage in OpenWorm

 		
 Interface

 		
 Data modeling

 		
 Information assurance

 		
 Miscellaneous

 		
 Why RDF?

 		
 Adding Data to YOUR OpenWorm Database

 		
 Contexts

 		
 Software Versioning

 		
 Documentation versioning

 		
 Python Release Compatibility

 		
 For Developers

 		
 Testing in owmeta

 		
 Preparing for tests

 		
 Running tests

 		
 Writing tests

 		
 Adding documentation

 		
 API Documentation

 		
 Substitutions

 		
 Conventions

 		
 owmeta coding standards

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

